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Abstract 

The interest in indentifying novel biomarkers for 
early stage breast cancer (BRCA) detection has 
become grown significantly in recent years. From a 
view of network biology, one of the emerging themes 
today is to re-characterize a protein’s biological 
functions in its molecular network. Although many 
methods have been presented, including 
network-based gene ranking for molecular biomarker 
discovery, and graph clustering for functional 
module discovery, it is still hard to find systems-level 
properties hidden in disease specific molecular 
networks. We reconstructed BRCA-related protein 
interaction network by using BRCA-associated 
genes/proteins as seeds, and expanding them in an 
integrated protein interaction database. We further 
developed a computational framework based on Ant 
Colony Optimization to rank network nodes. The task 
of ranking nodes is represented as the problem of 
finding optimal density distributions of “ant 
colonies” on all nodes of the network. Our results 
revealed some interesting systems-level pattern in 
BRCA-related protein interaction network. 

Introduction 

The interest in indentifying novel biomarkers for 
early stage breast cancer (BRCA) detection has 
become grown significantly in recent years1-3. Known 
BRCA susceptibility genes, e.g. P53, BRCA1, 
BRCA2, ERBB2 and PTEN, only account for 
15-20% of the familial risk4. Identification of these 
genes5, while extremely precious, is only a first step 
to understand BRCA progression. From a view of 
network biology6, these genes never function in 
isolation7, one study re-characterized them in a 
molecular interaction network for BRCA, and 
identified HMMR as a new susceptibility locus3. 
Another study integrated protein interaction network 
and gene expression data to improve the prediction of 
BRCA metastasis8. These works suggest that protein 
interaction networks, although noisy and incomplete, 
can serve as a molecule-level conceptual roadmap to 
guide future network biomarkers studies9. 

On the other hand, it is found that both biological 
shape10, 11 and physiological signals12, 13 have chaotic 

and/or fractal characteristics14, which indicate that 
many biological systems and networks could be 
analyzed effectively by applying nonlinear 
dynamical approaches involving chaos, fractal, 
bifurcation, pattern formation and complex systems15. 
For these studies, the concept of dynamical 
biomarkers was firstly introduced on a speech by A.L. 
Goldberger in 200616, which can be seen as an 
initiation of using nonlinear dynamical properties as 
biomarkers, although this concept has not extended to 
the area of molecular networks. 

Based on the relationship between features of 
complex networks (e.g. scale-free) and nonlinear 
dynamical properties (e.g. fractals)17, systems-level 
biomarkers (sys-biomarkers), as an innovative 
concept shown in Figure 1, derive from the marriage 
of network biomarkers and dynamical biomarkers. 
Although many methods have been presented in 
network biology, including network-based gene 
ranking for molecular biomarker discovery18, and 
graph clustering for functional module discovery19, it 
is still hard to find sys-biomarkers hidden in disease 
specific molecular networks. 

 
Figure 1. Evolvement of concepts on diagnostic 
biomarkers. 

Starting with the initial motivation of systems 
biology20, we reconstructed BRCA-related protein 
interaction network by taking BRCA-associated 
genes/proteins as seeds, using the nearest-neighbor 
expansion method21, and expanding them in an 
integrated protein interaction database. 

Our method allows BRCA experts to merge their 
prior knowledge on the BRCA-associated 
genes/proteins into a manually curated list (protein 
seeds), which could be obtained from the OMIMTM 
database (Online Mendelian Inheritance in ManTM). 

Here, we use the latest high-quality subsets of protein 
interaction data integrated into the Human Annotated 
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and Predicted Protein Interaction (HAPPI, 
http://bio.informatics.iupui.edu/HAPPI) database. In 
this database, all protein interactions are weighted, 
with a confidence score (SC) encoding prior 
knowledge of experimental and literature evidence 
supporting each protein interaction. 

We further developed a computational framework 
based on Ant Colony Optimization (ACO) 22 to rank 
network nodes. The task of ranking nodes is 
represented as the problem of finding optimal density 
distributions of “ant colonies” on all nodes of the 
network. Our results revealed some interesting 
systems-level pattern in BRCA-related protein 
interaction network. 

Results 

In our experiments, we firstly constructed an 
BRCA-related protein interaction network as 
described above. Using the ACO ranking algorithm, 
the ranking results of the weighted BRCA-related 
protein interaction network are shown in Figure 2, 
which show the ranked adjacency matrix according to 
the final density distribution. The top 20 proteins 
from the ranking result shown in Figure 2(f) are 
highlighted in Figure 3, which shows a high-quality 
BRCA-related protein interaction network when 
taking interaction confidence scores CS > 0.99. Node 
degree distributions plotted in Figure 4 for each 
BRCA-related protein interaction network taking 
different CS thresholds, are all very close to 
power-law distribution, which implies scale-free 
features.

 

 

(a) (b) 

(c) (d) 
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Figure 2. Node ranking of the weighted BRCA-related protein interaction network. (a) CS > 0.50; (b) CS > 0.60; (c) 
CS > 0.70; (d) CS > 0.80; (d) CS > 0.90; (d) CS > 0.99.

 
Figure 3. A visual layout of the BRCA protein interaction network (CS > 0.99). Top 20 proteins from the ranking 
result shown in Figure 2(f) are highlighted.

Discussion 

ACO is a dynamic process effective in solving 
optimization problems such as those of phylogenetic 
analyses in biology15. Here, we represent the task of 
finding network relevant nodes as an ant colony 

optimization problem, in which simulated ants (s-ant) 
roam all possible network paths iteratively. By 
designing various strategies of s-ants for each step 
taken to walk in a network, the iteration process can 
be manipulated to get the density distribution of 
s-ants crowding on each node. According to this 

(e) (f) 
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density distribution, the adjacency matrix of the 
network with ranked nodes is shown as a map in 
order to reveal the system-level features of the 
network. Experiments on an BRCA-relevant protein 
interaction network demonstrated that this method 
finds the key nodes in the network, and also reveals a 
fractal feature of the scale-free network through a 
quick-populating strategy of colonization. Analyses 
for both unweighted and weighted protein interaction 
networks based on this framework are given to 
exhibit the feasibility and flexibility of our method. 
Comparisons with previous works on BRCA-related 
protein interaction networks show the reliability of 
ACO. 

Conclusion 

Proteins ranked from an BRCA network using our 
method not only show system-level fractal 
characteristics but are also useful for subsequent 
translational biomedical discoveries of 
gene/protein-disease associations. The highly-ranked 
proteins from the case study for BRCA could be 
prioritized for “drug target candidates” and, with 
additional validation, for “disease biomarker 
candidates”, where proteins may be differentially and 
specifically expressed in tissues/biofluids based on an 
associated condition of health or disease. We found 
that ACO-adapted framework to be robust in 
identifying fractal-like organization with or without 
confidence weightings of network connections. Our 
results revealed fractal features not previously 
reported in disease-specific molecular interaction 
networks. Our results are comparable but seem more 
sensitive than a previous study11, suggesting 
convergence of different algorithmic approaches in 
revealing the same network characteristics of 
BRCA-related proteins. Proteins in this 
disease-specific network could have dramatically 
different characteristics than in the global network. 
For example, as labeled in Figure 2, CDK5 is a major 
BRCA-related protein and a “mini-hub” in the BRCA 
protein interaction network, but it is not a major hub 
in the global networks based on having a node degree 
of only 22 in the HAPPI database12. If we accept that 
fractal features reflect a high level of “orderness” 
eventually interpretable in biology, the results of our 
study and methodology could point to a brand-new 
direction of finding and ranking proteins and genes 
systematically for all human diseases with public data 
available to bioinformatics researchers today. 

Methods 

In this framework, node ranking is seen as an 
optimization problem, which is why the concept of an 
“ant colony” can be utilized. ACO is mostly like a 

multi-agent system, but each s-ant (also can be seen 
as an agent in the system) will mark its path in ACO 
in a manner comparable to the natural situation where 
a real ant will leave a pheromone on its track. The 
pheromone on the ground will stimulate other ants to 
work together and the whole ant colony will become 
more cooperative, in a phenomenon of 
self-organizing communication called stigmergy13. 
This characteristic of self-organization leads to an 
emergence of a complex system, and we propose to 
leverage this characteristic into solving the problem 
of complex biological networks by using it as a basis 
for complex systems modeling. In our developed 
methodology, s-ants roam all possible network paths 
iteratively, and marks signed by the s-ants act to 
accelerate the optimization process. By designing 
various strategies Fi of s-ants for each step taken to 
walk in a network, the iteration process can be 
manipulated to get the density distribution si of s-ants 
crowding on each node, as shown in Eq. (1). 
According to this density distribution, the ranked 
adjacency matrix of the network will be shown as a 
map to reveal the system-level feature of the network. 

 (1) 

Here Mi is determined by both the network features 
under analysis (including topology and weighted 
information) and the marks signed by s-ants. The 
initial column vector can be evaluated as s0 = (1/n, 
1/n,…, 1/n)T to describe the equivalence of each node 
in the network. The final density distribution sN will 
determine the rank of each node. Moreover, marks 
signed from outside will easily switch this scheme 
from an unsupervised mode into a supervised one. 

In a simple case of the proposed scheme, s-ants never 
sign a mark on the network, and Mi is only 
determined by the network, which means it is 
invariable. Eq. (1) can be reduced as: 

   (2) 

For further simplification, s-ants can be modeled by 
the constraint of maintaining a constant walking 
strategy, and Eq. (2) can be reduced as: 

 (3) 

Here M becomes the state transition probability 
matrix about the network. From Eq. (3), we observe 
there to be a typical Markov Chain. Let P denote the 
adjacency matrix of the network (in spite of directed 
versus undirected or unweighted versus weighted). In 
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the event where s-ants fail to populate, M can be 
obtained by Eq. (4). 

   (4) 

We established by proof that the final density 
distribution sN has a convergent limit as described by 
Eq. (5). 

   (5) 

If s-ants populate quickly, M can be simply evaluated 
as M = P. In this situation however, a convergent 
property of this algorithm cannot be assured for all 
kinds of networks. In our experiments, it seems to be 
related with a scale-free feature. 
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